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1 Introduction

The value-loss approach to problems of intertemporal resource allocation, pio-
neered by Radner (1961) and brought to maturity at the hands of McKenzie (1968,
2002), exploits the price implications of efficiency, basing its essential argumenta-
tion on the fact that the planner loses by deviating from price-supported activities.
In the context of intertemporal allocation problems without discounting, Brock
(1970) showed how the price-support property of a special stationary program
(known as the golden-rule) alone can be used to establish the existence of an opti-
mal program as one minimizing value-losses among all “good” programs. This
insight has by now been exploited in a variety of publications; indeed, Brock’s
theorem has been shown to go beyond mere existence to delineate the qualitative
properties of optimal programs.1

Dynamic programming represents an alternative approach to problems of in-
tertemporal resource allocation. This approach is based on the determination of a
value function in the first instance, and subsequently, on the optimal policy corre-
spondence that sustains it. The value function is obtained as the unique solution
to the functional equation of dynamic programming, and the optimal policy cor-
respondence can be seen as a solution to the associated maximization problem,
involving the solved value function. Thus, while the value-loss approach relies on
the methods of convex analysis, the dynamic programming approach belongs in
the province of functional analysis.

In this essay, we argue for a synthesis of these two approaches to problems of
optimal intertemporal allocation of resources. To be sure, this is not a novel aspi-
ration,2 but the literature lacks an example of a simple model, in which a complete
description of transition dynamics can be effectively obtained by a simultaneous
and complementary use of the two approaches.

The model we work with is a special case due to Robinson, Solow and Srin-
ivasan (termed the RSS model in Khan and Mitra 2005a) in which there is only
one type of machine, wherein, after normalization of a linear felicity function, the
constant amount of labor available in each period, and the sole technique in the
consumption-goods sector, are specified by only two real numbers: the labor-cap-
ital ratio a > 0, and the depreciation rate of the machines d ∈ (0, 1). In fact, it
turns out that optimal behavior in this model is governed effectively by the value
of one parameter, ξ = (1/a)− (1 − d), which measures the rate of transformation
between machines today and machines tomorrow, while maintaining full-employ-
ment of both labor and capital. This two-sector RSS model is also a special case of
the two-sector Leontief model considered in Nishimura andYano (1995), which in
itself is a special case of the standard neoclassical two-sector model of Srinivasan
(1964) and Uzawa (1964).3

We provide an analysis of optimal dynamic behavior in the two-sector RSS
model when future utilities are not discounted. This leads us to a thorough study

1 See, for example, the Faustmann solution in Mitra and Wan (1986), and the Stiglitz policy
in Khan and Mitra (2005a,b).

2 The work ofWeitzman (1973) is an outstanding example of the point of view that we advocate.
3 Since the investment goods sector uses labor as its only factor of production, the two-sector

RSS model is an extreme instance of a setting in which the consumption sector is capital-intensive
and there is no reversal of factor intensities, assumptions which have been emphasized in recent
work pertaining to cycles and chaos in economic theory.
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of the value-loss approach in the context of our simple model (see Section 3) and
reveals some aspects of the general theory of optimal intertemporal allocation that
might not be fully appreciated. Specifically, it highlights the fact that while value-
loss minimization implies optimality (a fact implicit in Brock’s demonstration of
the existence of an optimal program), optimality does not always imply value-loss
minimization. In the case in which the equivalence breaks down (ξ = 1), there exist
optimal programs that yield higher value-losses at golden-rule prices than other
(also optimal) programs, and this phenomenon is therefore seen to be intimately
tied to the non-uniqueness (in fact, indeterminacy) of optimal programs. In the case
in which the equivalence holds (ξ �= 1), a turnpike property of good programs can
be established, leading to an appropriate transversality condition being satisfied.

The turnpike property of good programs (when ξ �= 1) is the key to developing
a completely satisfactory theory of dynamic programming in the undiscounted case
(see Section 4). The results on dynamic programming which we present are, con-
sequently, based (indirectly) on the value-loss approach. 4 However, once derived,
the dynamic programming results can be employed to solve for (some regions of)
the optimal policy correspondence in a more streamlined and transparent manner
than the value-loss approach. On the other hand, the application of the value-loss
approach provides a more direct route to identify optimal behavior for other regions.
Thus, we show how a combination of the value-loss and dynamic programming
approaches can be employed effectively to solve completely for the optimal policy
correspondence in this simple model.

The explicit solution of the optimal policy correspondence allows us to exam-
ine the nature of optimal transition dynamics in a way that the general theory of
intertemporal allocation does not allow us to do (since it can only discuss aspects
of long-run optimal behavior). Two features of the transition dynamics (discussed
in Section 5) stand out. First, starting from initial stocks below the golden-rule,
optimality always requires an over-building phase, leading to stocks above the
golden-rule stock, even when the long-run behavior warrants a convergence to
the golden-rule stock. Second, even when it is feasible to fully utilize the avail-
able capital stock, it is not always optimal to do so, making it possible to observe
excess-capacity and production of machines in the same period.

The first feature is not only quite distinct from the monotone convergence result
in the corresponding continuous-time model5. It makes this extremely simple two-
sector model qualitatively different from discrete-time aggregative models in which
monotone optimal behavior is a consequence of the “non-crossing property”. The
second feature is especially noteworthy because it directly contradicts a central
policy prescription of Stiglitz (1968), obtained from a continuous-time analysis of
the RSS model: a Stiglitz policy would require that all the existing capital stock
(in the consumption good sector) be manned, if possible, and the remaining labor
(if any) be used to produce new machines.

4 In contrast to the usual approach to dynamic programming in the discounted case, which
relies on a contraction mapping theorem in an appropriate function space, our approach to un-
discounted dynamic programming makes use of the methods of convex analysis.

5 See Stiglitz (1968) and Khan and Mitra (2003).
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2 Preliminaries

2.1 The model

We work with a special case of a two-sector model in which the production of
machines requires only labor. In the consumption-good sector, a single consump-
tion good is produced by infinitely divisible labor and machines with the further
Leontief specification that a unit of labor and a unit of a machine produce a unit
of the consumption good. In the investment-good sector, only labor is required to
produce machines, with a > 0 units of labor producing a single machine. Machines
depreciate at the rate 0 < d < 1. A constant amount of labor, normalized to unity,
is available in each time period t ∈ N, where N is the set of non-negative integers.
Thus, in the canonical formulation of McKenzie (1968, 2002), the collection of
production plans (x, x ′), the amount x ′ of machines at the end of the next period
(tomorrow) from the amount x available at the end of the current period (today),
is given by the transition possibility set:

� = {(x, x ′) ∈ R
2
+ : x ′ − (1 − d)x ≥ 0, and a(x ′ − (1 − d)x) ≤ 1}

where z ≡ (x ′ − (1 − d)x) is the number of machines that are produced during the
next period, and z ≥ 0 and az ≤ 1 respectively formalize constraints on reversib-
lity of investment and the use of labor. For any (x, x ′) ∈ �, one can consider the
amount y of the machines available for the production of the consumption goods,
leading to a correspondence � : � −→ R+ with �(x, x ′) = {y ∈ R+ : 0 ≤
y ≤ x and y ≤ 1 − a(x ′ − (1 − d)x)}. Welfare is derived only from the consump-
tion good and is represented by a linear function, normalized so that y units of
the consumption good yields a welfare level y. A reduced form utility function,
u : � → R+ with u(x, x ′) = max{y ∈ �(x, x ′)} indicates the maximum welfare
level that can be obtained today, if one starts with x of machines today, and ends
up with x ′ of machines tomorrow, where (x, x ′) ∈ �.

An economy consists of a pair (a, d), and the following concepts apply to it. A
feasible program from xo is a sequence {x(t), y(t)} such that x(0) = xo, and for all
t ∈ N, (x(t), x(t +1)) ∈ � and y(t) ∈ �((x(t), x(t +1)).A program from xo is a
sequence {x(t), y(t)} such that x(0) = xo, and for all t ∈ N, (x(t), x(t + 1)) ∈ �
and y(t) = max �((x(t), x(t + 1)) = u(x(t), x(t + 1)). A program {x(t), y(t)}
is a program from x(0), and associated with it is a gross investment sequence
{z(t + 1)}, defined by z(t + 1) = (x(t + 1) − (1 − d)x(t)) and a consumption
sequence {c(t + 1)} defined by c(t + 1) = y(t) for all t ∈ N. It is easy to check
that every program {x(t), y(t)} is bounded by M(x(0)) ≡ max{x(0), x̄}, where
x̄ = (1/ad) is the maximum sustainable capital stock . A program {x(t), y(t)} is
called stationary if (x(t), y(t)) = (x(t +1), y(t +1)) for all t ∈ N. For a stationary
program {x(t), y(t)}, we have x(t) ≤ x̄ for all t ∈ N.

A program {x∗(t), y∗(t)} from xo is called optimal if:

lim
T →∞

inf
T∑

t=0

[u(x(t), x(t + 1)) − u(x∗(t), x∗(t + 1))] ≤ 0

for every program {x(t), y(t)} from xo.A stationary optimal program is a program
that is stationary and optimal.
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2.2 Full employment programs

Our analysis in the following sections will be facilitated by focusing on full-employ-
ment programs, {x(t), y(t)}, which are programs satisfying: y(t) + a[x(t + 1) −
(1 − d)x(t)] = 1 for all t ∈ N. In this subsection, we note some basic properties
relating to programs and full-employment programs, which will be useful in this
connection.

It is fairly obvious that given any program, there is a full-employment program
which has the same consumption sequence. Slightly more subtle is the property that
higher initial stocks always allow programs which have dominating consumption
sequences (at least as high in all periods, higher in at least one period). It is a con-
sequence of this property that given any program which is not a full-employment
program, there is a full-employment program (from the same initial stock) that has
a dominating consumption sequence. We formally summarize these results in the
following Proposition.6

Proposition 1 (1) If {x(t), y(t)} is a program from x, then there is a full-employ-
ment program {x ′(t), y ′(t)} from x, such that y ′(t) = y(t) for t ≥ 0.

(2) If {x(t), y(t)} is a program from x, and x ′ > x then there is a full-employ-
ment program {x ′(t), y ′(t)} from x ′, such that y ′(t) ≥ y(t) for all t ∈ N, and
y ′(t) > y(t) for some t ∈ N.

(3) If {x(t), y(t)} is a program from x, which is not a full-employment pro-
gram, then there is a full-employment program {x ′(t), y ′(t)} from x, such that
y ′(t) ≥ y(t) for all t ∈ N, and y ′(t) > y(t) for some t ∈ N.

2.3 A golden rule

The concept of a golden-rule plays a fundamental role in our analysis. Formally, we
define a stock x̂ ∈ R+ as a golden-rule stock if (x̂, x̂) ∈ � and u(x̂, x̂) ≥ u(x, x ′)
for all (x, x ′) ∈ � with x ′ ≥ x. We record in the following result the existence and
uniqueness of a golden-rule stock, and its “price support”. It is useful to note that
the golden-rule stock is unique, even though there is no strict concavity-convexity
feature in the specification of our model.

Proposition 2 (1)The pair (x̂, p̂) = (1/(1+ad), a/(1+ad)) satisfies (x̂, x̂) ∈ �,
and:

u(x̂, x̂) ≥ u(x, x ′) + p̂x ′ − p̂x f or all (x, x ′) ∈ � (1)

(2) x̂ is a unique golden-rule stock.

We refer to p̂, given by Proposition 2, as the golden-rule price and to the pair
(x̂, p̂) as the golden-rule. The golden-rule price provides a price-support to the
golden-rule stock in the sense conveyed precisely by (1). Note that the golden-rule
consumption level is ŷ = x̂. The von Neumann facet is the set of those (x, x ′) ∈ �
for which equality holds in (1).

6 The proofs, being fairly straightforward, are omitted.
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The value-loss (relative to the golden-rule) from operating at (x, x ′) ∈ � and
y = u(x, x ′) is:

δ(x, x ′, y) = u(x̂, x̂) − [u(x, x ′) + p̂x ′ − p̂x] ≥ 0 (2)

Given that there are two factors of production, intuition suggests only two possible
sources of value-loss: excess-capacity of capital and unemployment of labor. This
can be formalized by splitting up the value-loss in (2) into two parts as follows:

α(x, x ′, y) = p̂d(x − y) ≥ 0
β(x, x ′, y) = (p̂/a)(1 − y − a(x ′ − (1 − d)x)) ≥ 0
δ(x, x ′, y) = α(x, x ′, y) + β(x, x ′, y) ≥ 0

⎫
⎬

⎭ (3)

Let {x(t), y(t)}be a program; then, (x(t), x(t+1)) ∈ � andy(t) = u(x(t), x(t+
1)) for t ∈ N. Thus, using (2) and (3), we have for t ∈ N :

u(x̂, x̂) = u(x(t), x(t + 1)) + p̂x(t + 1) − p̂x(t) + α(t) + β(t)

≡ u(x(t), x(t + 1)) + p̂x(t + 1) − p̂x(t) + δ(t) (4)

where α(t) = α(x(t), x(t + 1), y(t)), β(t) = β(x(t), x(t + 1), y(t)) and δ(t) =
δ(x(t), x(t + 1), y(t)) for t ∈ N. This yields a useful identity, relating the sum
of value losses to the sum of utility differences from the golden rule utility level,
along any program {x(t), y(t)} and any T ∈ N :

T∑

t=0

[u(x(t), x(t + 1)) − u(x̂, x̂)] = p̂x(0) − p̂x(T + 1) −
T∑

t=0

δ(t) (SVL)

We can eliminate the variable y(t) = u(x(t), x(t + 1)) from (4), by using (3),
to obtain for all t ∈ N :

x(t + 1) = (1/a) − ξx(t) + A(t) − B(t)

where ξ = [(1/a)− (1−d)], and A(t) = (1/adp̂)α(t), B(t) = (1/p̂)β(t) for t ∈
N. On measuring capital stocks relative to the golden-rule stock, X(t) = (x(t)−x̂),
and on noting that x̂ = (1/a) − ξ x̂, we can obtain the basic dynamic equation of
this essay:

X(t + 1) = (−ξ)X(t) + A(t) − B(t) f or all t ∈ N (5)

The parameter, ξ, which figures prominently in our analysis, represents the rate of
transformation between machines today and machines tomorrow, while maintain-
ing full-employment of both labor and capital. Without further explicit mention, ξ
will be assumed to be positive in what follows. 7

7 The reader can look at Khan and Mitra (2005b) for an analysis of the case in which ξ ≤ 0.
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2.4 Long-run dynamics of good programs

A program {x(t), y(t)} is called good if there is a real number G such that for
all T ∈ N, we have

∑T
t=0[u(x(t), x(t + 1)) − u(x̂, x̂)] ≥ G. The general theory

of intertemporal resource allocation emphasizes the average turnpike property as
the basic asymptotic result of good programs. The two-sector RSS model is fully
affirmative (as it must be) of the general theory in its abstract form, but its particular
structure yields an interesting parametric classification, depending on the value of
our key parameter, ξ, which we now describe.

In the case ξ �= 1, every good program is seen to converge to the golden-rule
stock, a turnpike property. When ξ = 1, in contrast, there are good programs which
exhibit a period-two cycle, and every good program is seen to either converge to
the golden-rule stock or to converge to a period-two cycle around the golden-rule
(see Theorem 1). These results are derived by using the price-support property in
Proposition 2, and the basic dynamic equation (5). They nicely illustrate why the
average turnpike property of good programs is indeed the general result of the
subject.

Theorem 1 (1) There exists a good program {x(t), y(t)} from every xo ∈ R+.
(2) If {x(t), y(t)} is a good program, then

∑∞
t=0 δ(t) < ∞.

(3) If ξ �= 1, and {x(t), y(t)} is a good program, then (x(t), y(t)) → (x̂, ŷ) as
t → ∞, and:

∞∑

t=0

[u(x(t), x(t + 1)) − u(x̂, x̂)] = p̂x(0) − p̂x̂ −
∞∑

t=0

δ(t) (US)

(4) Suppose ξ = 1, and {x(t), y(t)} is a good program, such that x̃ is an arbi-
trary limit point of {x(t)}. Then, either x(t) converges to x̃ for all odd periods, and
to (2x̂ − x̃) for all even periods, or x(t) converges to x̃ for all even periods, and
to (2x̂ − x̃) for all odd periods.

3 Optimality and value-loss minimization

In this section we study the implications of the value-loss approach to dynamic
optimization problems in the context of the RSS model. The focus of the study is
the relation between optimality and value-loss minimization.

We start with the observation that value-loss minimization is sufficient for
optimality, and make this observation operational (in checking for optimality) by
obtaining a formula which enables us to keep track of the sum of value-losses along
(full-employment) programs. These results are useful in characterizing the optimal
policy correspondence in section 4.

We then show that value-loss minimization is necessary for optimality when
ξ �= 1, and this becomes the key ingredient in developing the dynamic program-
ming approach in section 4. When ξ = 1, value-loss minimization is not necessary
for optimality, and this observation can be seen to be closely related to the result
that there are initial stocks from which optimal programs are indeterminate.
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3.1 Value-loss minimization implies optimality

Brock (1970) showed that value-loss minimization is sufficient for optimality;
therefore, establishing the existence of a program which minimizes the sum of
value-losses enables one to establish the existence of an optimal program. For easy
reference, we state his result for our framework.

Proposition 3 (1) If {x(t), y(t)} is a program from x ∈ R+, such that:

∞∑

t=0

δ(t) ≤
∞∑

t=0

δ′(t) (VLM)

for every program {x ′(t), y ′(t)} from x, then {x(t), y(t)} is optimal from x.
(2) If x ∈ R+, there is a program {x(t), y(t)} from x, such that:

∞∑

t=0

δ(t) ≤
∞∑

t=0

δ′(t)

for every program {x ′(t), y ′(t)} from x.
(3) If x ∈ R+, there is an optimal program from x.

Statement (1) of the above Proposition can provide a useful criterion for char-
acterizing optimality, if there is a convenient way to express the magnitude of the
sum of value losses along a program. Our next result provides the central result
in this direction by showing that the sum of value-losses along full-employment
programs is related to the variation in the value of capital stocks over time.

Lemma 1 (1) For any full-employment program {x(t), y(t)},
T∑

t=0

[α(t)/(−ξ)t ] = adξ{p̂X(0) − p̂[X(T + 1)/(−ξ)T +1]} f or all T > 1 (6)

(2) Any optimal program is a full-employment program, and satisfies (6).

3.2 Optimality does not imply value-loss minimization

In our framework, good programs exist from every initial stock. Consequently, opti-
mal programs are necessarily good; so in providing the parametric classification of
long-run dynamics of good programs (stated in Theorem 1 above), the RSS model
illustrates an important point that ought to be emphasized. When ξ �= 1, optimality
implies value-loss minimization, since the relevant “transversality condition”:

lim
t→∞ p̂(x(t) − x̂) = 0

is satisfied along an optimal program {x(t), y(t)}.
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Proposition 4 If {x(t), y(t)} is an optimal program from x ∈ R+, then it must be
good. If ξ �= 1, then:

lim
t→∞ p̂(x(t) − x̂) = 0 (7)

and:

∞∑

t=0

δ(t) ≤ lim
T →∞

T∑

t=0

δ′(t) (VLM)

for every program {x ′(t), y ′(t)} from x. Furthermore, we have:

∞∑

t=0

[u(x(t), x(t + 1)) − u(x̂, x̂)] = p̂x(0) − p̂x̂ −
∞∑

t=0

δ(t) (US)

A consequence of the above Proposition is that one can develop a completely
satisfactory theory of undiscounted dynamic programming in the case ξ �= 1, com-
parable to the theory available in the discounted case, a topic we address fully in
the next section.

However, in the case ξ = 1, the transversality condition (7) is not necessarily
satisfied along optimal programs, and optimality does not imply value-loss minimi-
zation. It is a consequence of this observation, that when ξ = 1, optimal programs
are no longer unique and, in fact, we can have indeterminacy of optimal programs
(see Theorem 2 below).

This is most conveniently demonstrated by using Lemma 1 to show that if
ξ = 1, then at least for initial stocks above and “close to” the golden-rule stock,
there is a continuum of optimal programs. Two of these optimal programs can
be described simply. The program with zero value loss in every period generates
period-two cycles around the golden-rule and is optimal since it clearly minimizes
the sum of value-losses. However, the (“straight down the turnpike”) program
which reaches the golden-rule stock in one period, and thereafter stays there, is
also optimal, and it does not minimize the sum of value-losses.

Theorem 2 Suppose ξ = 1 and xo ∈ (x̂, 1).
(1) The full-employment program {x(t), y(t)} from xo, satisfying x(t) = x̂ for

all t ≥ 1, is optimal from xo.
(2) The full-employment program {x ′(t), y ′(t)} from xo, satisfying x ′(t) = xo

for all even t and x ′(t) = 2x̂ − xo for all odd t, is optimal from xo.
(3) There is a continuum of optimal programs from xo.

4 Optimal policy function

In this section, we provide an explicit solution of the optimal policy correspondence
for our model, which provides a complete characterization of optimal behavior.
One can infer from it the nature of optimal behavior in the long-run (asymptotic
properties) as well as in the short-run (transition dynamics).

The optimal policy correspondence for our model can be defined as a corre-
spondence, h, from R+ to subsets of R+ such that, given any x ∈ R+, there is an
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optimal program {x(t), y(t)} from x, with x(1) ∈ h(x). Since � is convex, any
convex combination of optimal programs from x is a program from x, and since
u is concave on �, it too must be optimal from x. Thus, h is a convex-valued
correspondence.

The optimal policy correspondence is a concept belonging principally to the
dynamic programming approach to optimization problems, and so naturally we rely
on the theory of dynamic programming to solve it. In this connection, let us make
two observations. First, a theory of dynamic programming in the undiscounted case,
exactly analogous to that in the discounted case, can be developed when ξ �= 1,
using the turnpike property of good programs (Theorem 1). Thus our basic results
on dynamic programming (stated in the first subsection below) are derived using the
value-loss approach. Second, while the dynamic programming approach is ideally
suited to solving for the optimal policy correspondence for certain domains (“high”
and “low” capital stocks), the value-loss approach (especially Propositions 3, 4 and
Lemma 1) to optimization problems appears to be better suited to solving it for
other domains (the “middle section” of capital stocks). Solving completely for the
optimal policy correspondence essentially uses a synthesis of the two approaches.
This method, independent of the result itself, seems to us to be of potential use in
the study of other dynamic optimization problems.

4.1 Dynamic programming

In this subsection, we develop the principal results of dynamic programming for
our model with the standing hypothesis of ξ �= 1. For this purpose, we need to
define the central concept of a value function for our model. To this end, note that,
given x ∈ R+, any optimal program {x(t), y(t)} from x is good (by Proposition
4), has

∑∞
t=0 δ(t) < ∞ (by Theorem 1), and minimizes the sum of value losses (by

Proposition 4). Therefore, it has the same sum of value losses as any other optimal
program from x. Denote this common value (finite by Theorem 1) by δ(x). Thus,
(US) of Proposition 4 can be rewritten as:

∞∑

t=0

[u(x(t), x(t + 1)) − u(x̂, x̂)] = p̂x − p̂x̂ − δ(x) (8)

We can therefore define a value function, V : R+ → R , by:

V (x) ≡
∞∑

t=0

[u(x(t), x(t + 1)) − u(x̂, x̂)] (9)

where {x(t), y(t)} is any optimal program from x, since the right-hand side of (8)
is independent of the optimal program chosen.8 Note that for every good program
{x ′(t), y ′(t)} from x, we have by using (US) of Theorem 1(3), and (8) and (9),

8 A similar device is used by Brock and Majumdar (1988) to define the value function in
the undiscounted case. However, in their framework, they follow Gale (1967) and assume strict
concavity of the utility function, so that optimal programs are unique by assumption. In our
framework, the utility function is not strictly concave. However, when ξ �= 1, the turnpike prop-
erty holds, and this ensures that the limit in (9) is well-defined and independent of the actual
optimal program chosen.
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V (x) ≥
∞∑

t=0

[u(x ′(t), x ′(t + 1)) − u(x̂, x̂)] (10)

We define the transition correspondence from R+ to subsets of R+ by �(x) =
{x ′ ∈ R+ : (x, x ′) ∈ �}. We can now summarize the principal result on dynamic
programming as follows.

Proposition 5 (1) The value function V is a concave and strictly increasing func-
tion on R+ and continuous on R++, satisfying V (x̂) = 0 ; (2) V satisfies the
functional equation of dynamic programming V (x) = maxx ′∈�(x){[u(x, x ′) −
u(x̂, x̂)] + V (x ′)};(3) {x(t), y(t)} is an optimal program if and only if for all
t ∈ N, V (x(t)) = [u(x(t), x(t + 1)) − u(x̂, x̂)] + V (x(t + 1)).

Since any program starting from a point in X ≡ [0, 1/ad] remains in X, we
will use X as the state space, and confine our solution of the optimal policy corre-
spondence to this domain.9

The above result on dynamic programming helps us to pin down the optimal
policy correspondence for certain ranges of stocks in X, when ξ �= 1. To state this
precisely, let us denote:

k ≡ x̂/(1 − d), A = [0, x̂], B = (x̂, k), C = [k, 1/ad] (11)

We refer to A as the range of “low stocks” and to C as the range of “high stocks”.
For these two ranges of stocks, Proposition 5 yields the following characterization
of the optimal policy correspondence (when ξ �= 1).

Corollary 1 Suppose ξ �= 1. Then the optimal policy correspondence, h : X →
R+ satisfies:

h(x) =
{

(1/a) − ξx f or all x ∈ A

(1 − d)x f or all x ∈ C
(12)

4.2 The value-loss approach

The value-loss approach essentially utilizes the relation between optimality and
value-loss minimization, that we developed in section 3. Using this approach, and
still confining ourselves to the case ξ �= 1, one can solve for the optimal policy
function for the middle range of stocks, denoted by B in (11), thereby completing
the full description of the optimal policy function on X, when ξ �= 1.

Specifically, in the case in which ξ < 1, one can define a program, starting from
any initial stock in B, which has minimum value loss in the initial period (among all
programs starting from the same initial stock) and zero value-loss in all subsequent
periods, and is therefore optimal. Furthermore, any first-period deviation from this
program produces a larger initial value-loss, so that the policy function is given by
exactly the first-period stock along the specified program.

9 After the solution has been presented on X, the reader should have no difficulty in checking
that (1 − d)x ∈ h(x) for x > (1/ad).
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Fig. 1 Optimal policy function

In the case ξ > 1, the program which reaches the golden-rule stock in the first
period and stays there forever afterwards can be shown to have the minimum sum
of value losses by a direct application of Lemma 1, although it clearly does not
have minimum value loss in the initial period. The bifurcation in optimal behavior
seen by comparing the case ξ < 1 with ξ > 1 is the key to understanding the
optimal dynamics in this model.

Corollary 2 (1) Suppose ξ > 1. Then the optimal policy correspondence, h :
X → R+ satisfies:

h(x) = x̂ f or x ∈ (x̂, k) (13)

(2) Suppose ξ < 1.Then the optimal policy correspondence, h : X → R+
satisfies:

h(x) =
{

(1/a) − ξx f or x ∈ (x̂, 1)

(1 − d)x f or x ∈ [1, k)
(14)
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We treat the borderline case of ξ = 1 last. In this case, we expect (in view of
the bifurcation mentioned above, as well as the result in Theorem 2) to observe
non-unique optimal behavior, and this is indeed the case. In fact, any first-period
stock between the first-period optimal stocks in the above two cases (of ξ < 1 and
ξ > 1) can be seen to be optimal in this case.

Corollary 3 Suppose ξ = 1. Then the optimal policy correspondence, h : X →
R+ satisfies:

(1/a) − ξx ∈ h(x) f or x ∈ A
[(1/a) − ξx, x̂] ⊂ h(x) f or x ∈ (x̂, 1)
[(1 − d)x, x̂] ⊂ h(x) f or x ∈ [1, k)
(1 − d)x ∈ h(x) f or x ∈ C

(15)

5 Discussion of transition dynamics

Given the full description of optimal behavior, through an explicit solution of the
optimal policy correspondence, we devote this section to a discussion of some
aspects of optimal transition dynamics.

Probably the aspect of optimal behavior that stands out most clearly in this
model is the phenomenon of “overbuilding” starting from initial stocks below the
golden-rule. We never have monotonic convergence to the golden-rule starting
from such initial stocks, as one would have in a continuous-time version of this
model. But a continuous-time version misses out on a crucial ingredient, the “time
to build” aspect of durable capital goods.10 After the phase of over-building, opti-
mality requires (except in the borderline case of ξ = 1) that there be convergence
to the golden-rule stock (either immediately, as in the case of ξ > 1, or asymp-
totically, as in the case ξ < 1, when overbuilding leads to stocks in the “middle
range”).

This overbuilding phenomenon also distinguishes optimal behavior in the two-
sector RSS model from other discrete-time models, in which a “non-crossing"
property holds.11 The non-crossing property implies monotonic optimal behavior
over time in all dynamic models with a stationary structure. Although our model
appears to be as simple as (in some respects, even simpler than) some of the aggre-
gative models in which the non-crossing property holds, it generates considerably
richer optimal dynamics.

The other aspect of optimal behavior that is noteworthy stems from the fact
that our framework is a stripped-down version of the RSS model, used in studying
optimal choice of technique in the process of development. In that framework, a
continuous-time analysis by Stiglitz (1968) revealed an important policy prescrip-
tion. In the case of a single type of machine (the special case of the RSS model
that we are dealing with) this policy warrants that labor be first allocated to man
the machines in the consumption goods sector, and only the remaining labor (if
any) be allocated to produce new machines. Thus, it would never be optimal to

10 This aspect has been emphasized as an important ingredient in producing optimal fluctua-
tions in other frameworks with durable capital; see, among others, Kydland and Prescott (1982)
and Mitra and Wan (1986).

11 See, for example, Majumdar and Nermuth (1982) and Dechert and Nishimura (1983).



354 M. Ali Khan and T. Mitra

have excess-capacity, so long as it is feasible to man the stock of capital in the con-
sumption-goods sector (that is, so long as the initial stock did not exceed unity).
However, in our discrete-time formulation, we clearly see that when ξ > 1, and the
initial stock is between the golden-rule stock and unity, it is optimal to decumulate
to precisely the golden-rule stock (and no further), thereby using less than the full
capacity of the consumption good sector.12

6 Proofs

Proof of Proposition 2 (1) It is straightforward to check that (x̂, x̂) ∈ � and
u(x̂, x̂) = x̂. Now, denote for (x, x ′) ∈ � and y ∈ �(x, x ′), dp̂(x − y) by
α(x, x ′, y), and (p̂/a){1−y−a[x ′−(1−d)x]}byβ(x, x ′, y).Then,α(x, x ′, y) ≥ 0
and β(x, x ′, y) ≥ 0. The result now follows from the following computation:

y + p̂x ′ − p̂x = y + p̂[x ′ − (1 − d)x] − dp̂x

= [1/(1 + ad)]y + p̂[x ′ − (1 − d)x] − α(x, x ′, y)

= [1/(1 + ad)]{y + a[x ′ − (1 − d)x]} − α(x, x ′, y)

= x̂{y + a[x ′ − (1 − d)x]} − α(x, x ′, y)

= x̂ − x̂{1 − y − a[x ′ − (1 − d)x]} − α(x, x ′, y)

= x̂ − β(x, x ′, y) − α(x, x ′, y) (16)

(2) If x is a golden-rule stock, then (x, x) ∈ � and y ∈ �(x, x), with y = x̂. Thus,
using (16), we must have β(x, x, y) = α(x, x, y) = 0, so that x = y = x̂. �

Proof of Theorem 1 (1) Define y(0) = 0, and y(t + 1) = (1 − d)y(t) + dx̂ for
t ≥ 0. Then, y(t) is monotonically non-decreasing, and converges to x̂ = ŷ as
t → ∞. Define z(t + 1) = dx̂ for t ≥ 0. Given an arbitrary initial stock, x, define
x(0) = x, and x(t + 1) = (1 − d)x(t) + z(t + 1) for t ≥ 0. Then, it is easy to
check that {x(t), y(t)} is a program from x. Given the definition of the sequence
{y(t)}, we have (y(t) − ŷ) = (1 − d)t (y(0) − ŷ) for t ≥ 0. Thus, the sequence
{ŷ − y(t)} is summable, and so {x(t), y(t)} is a good program from x.

(2) Using (SVL), we have, for T ∈ N :

T∑

t=0

[u(x(t), x(t + 1)) − u(x̂, x̂)] = p̂x(0) − p̂x(T + 1) −
T∑

t=0

δ(t)

Since {x(t), y(t)} is good, there is a real number G, such that
∑T

t=0[u(x(t), x(t +
1)) − u(x̂, x̂)] ≥ G, for all T ∈ N. So,

∑T
t=0 δ(t) ≤ p̂x(0) − G for all T ∈ N,

and consequently
∑∞

t=0 δ(t) < ∞.

12 This aspect is explored more fully in Khan and Mitra (2005a), where Stiglitz policies are
explicitly formulated (in a discrete-time version of the RSS model, with many types of machines)
and compared to optimal policies.
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(3) Note that since {x(t), y(t)} is good, we can infer from (2) above and equa-
tion (3) that

∑∞
t=0 A(t) < ∞, and

∑∞
t=0 B(t) < ∞. This implies that given any

ε > 0, we can choose a positive integer τ ∈ N, such that:

∞∑

t=τ

A(t) +
∞∑

t=τ

B(t) < ε/3 (17)

Further, defining D = 2M(x), we have |X(t)| ≤ D for t ∈ N, since x(t) ≤ M(x)
for t ≥ 0, and x̂ ≤ x̄ ≤ M(x). Note that since 0 < ξ = (1/a) − (1 − d), we
have two possible cases: (a) 0 < ξ < 1, and (b) ξ > 1.Thus, we can find a positive
integer ν such that:

min[Dξv, D/ξv] < ε/3 (18)

Now, pick any positive integer, T ≥ τ. Then, for all positive integers n ≥ ν,
we have by iterating on (5):

X(T + n) = (−ξ)nX(T ) +
n−1∑

s=0

(−ξ)n−1−sA(T + s) −
n−1∑

s=0

(−ξ)n−1−sB(T + s)

(19)

Now, under case (a), we use (17) and (18) in (19) to get |X(T + n)| < ε. In case
(b), we divide (19) by (−ξ)n to obtain:

(1/(−ξ)n)X(T + n) = X(T ) +
n−1∑

s=0

(1/(−ξ)1+s)A(T + s)

−
n−1∑

s=0

(1/(−ξ)1+s)B(T + s) (20)

Using (17) and (18) in (20), we obtain |X(T )| < ε. Since T ≥ τ, and n ≥ ν are
arbitrary, we have in either case, |x(t) − x̂| = |X(t)| → 0 as t → ∞. Using
Proposition 1, we have y(t) = 1 − a[x(t + 1) − (1 − d)x(t)] for all t ∈ N, and so
y(t) → 1 − a[x̂ − (1 − d)x̂] = x̂ = ŷ as t → ∞. Using (2) above and the fact
that x(t) → x̂ as t → ∞, we note that the right hand side of (SVL) has a limit as
T → ∞, and so the left-hand side of (SVL) also has a limit as T → ∞. Taking
limits in (SVL), by letting T → ∞, we obtain (US).

(4) As in the proof of (3) above, given any ε > 0, we can choose a positive
integer τ ∈ N, such that (17) holds. Now, given any integer T ≥ τ, we sum (5)
from T to T + s, except that for s odd, we use the equation in (5) with a negative
sign. This yields:

−(ε/3) ≤ −
[ ∞∑

t=T

A(t) +
∞∑

t=T

B(t)

]
≤ X(T ) + (−1)sX(T + s + 1)

≤
[ ∞∑

t=T

A(t) +
∞∑

t=T

B(t)

]
≤ (ε/3) (21)
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Let x̃ be an arbitrary limit point of {x(t)}. Denote (x̃ − x̂) by X̃; then, there is
a subsequence {tr}, such that {X(tr)} converges to X̃. Pick μ such that for r ≥ μ,

we have tr ≥ τ, and X̃ − (ε/3) ≤ X(tr) ≤ X̃ + (ε/3). Thus, using (21), we have
for r ≥ μ, and s ∈ N,

−X̃ − (2ε/3) ≤ −X(tr) − (ε/3) ≤ (−1)sX(tr + s + 1)

≤ −X(tr) + (ε/3) ≤ −X̃ + (2ε/3)

Thus, for even positive integers s, we obtain:−X̃ − (2ε/3) ≤ X(tμ + s + 1) ≤
−X̃ + (2ε/3), so that X(tμ + s) converges to (−X̃) for all odd integers s. Also, for
odd positive integers s, we obtain: −X̃−(2ε/3) ≤ −X(tR+s+1) ≤ −X̃+(2ε/3).

We can write this as: X̃− (2ε/3) ≤ X(tR + s +1) ≤ X̃+ (2ε/3), so that X(tμ + s)

converges to X̃ for all even integers s.

If tμ is odd, we have X(t) converging to (−X̃) for even integers and X(t)

converging to X̃ for odd integers. If tμ is even, we have X(t) converging to (−X̃)

for odd integers and X(t) converging to X̃ for even integers. �
Proof of Lemma 1 (1) If {x(t), y(t)} is a full-employment program, then B(t) = 0
for all t ∈ N. Thus, we can use (5) to write:

[A(t)/ξ t ] = [X(t + 1)/ξ t ] + ξ [X(t)/ξ t ] f or t ∈ N (22)

Given any positive integer T ∈ N, we now sum (22) from t = 0 to t = T , except
that for t odd, we use the equation in (22) with a negative sign. This yields:

T∑

t=0

[A(t)/(−ξ)t ] = ξ{X(0) − [X(T + 1)/(−ξ)T +1]} (23)

Using the fact that A(t) = [α(t)/p̂ad] for t ∈ N, (23) yields (6).
(2) Using (3) of Proposition 1, if {x(t), y(t)} is an optimal program, then it

must be a full-employment program. Hence, it must satisfy (6), by (1) above. �
Proof of Proposition 4 If {x(t), y(t)} is an optimal program fromx, and {x ′(t), y ′(t)}
is any program from x, then using (4), we can write for every positive integer
T ∈ N,

∑T −1

t=0
[u(x ′(t), x ′(t + 1)) − u(x̂, x̂)] = p̂x ′(0) − p̂x ′(T ) −

∑T −1

t=0
δ′(t) (24)

and:
∑T −1

t=0
[u(x ′(t), x ′(t + 1)) − u(x(t), x(t + 1))]

= p̂x(T ) − p̂x ′(T ) −
∑T −1

t=0
δ′(t) +

∑T −1

t=0
δ(t) (25)

By Theorem 1 (1), there is a good program {x̄(t), ȳ(t)} fromx, and
∑∞

t=0 δ̄(t) < ∞.
So, using this program in place of {x ′(t), y ′(t)} in (25), together with the fact that
{x(t), y(t)} is an optimal program from x, we can infer that

∑∞
t=0 δ(t) < ∞, since

x̄(t) ≤ M(x) for t ≥ 0. Now, using {x(t), y(t)} in place of {x ′(t), y ′(t)} in (24),
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we see that {x(t), y(t)} must be good, since x(t) ≤ M(x) for t ≥ 0. Now, (7)
follows from Theorem 1 (3).

Since we have verified that {x(t), y(t)} is good, we have
∑∞

t=0 δ(t) < ∞ by
Theorem 1(2). If {x ′(t), y ′(t)} is not good, then since x ′(t) ≤ M(x) for t ≥ 0, we
can use (24) to infer that

∑T −1
t=0 δ′(t) → ∞ as T → ∞, so that (VLM) is trivially

satisfied. If {x ′(t), y ′(t)} is good, then
∑∞

t=0 δ′(t) < ∞ by Theorem 1(2). Further,
from Theorem 1(3), we have limt→∞p̂x(t) = p̂x̂, and limt→∞p̂x ′(t) = p̂x̂. Thus,
we see that the right hand side of (25) has a limit as T → ∞. So, the left-hand
side of (25) has a limit as T → ∞, and this limit equals [

∑∞
t=0 δ(t)−∑∞

t=0 δ′(t)].
Now, (VLM) follows from the optimality of {x(t), y(t)}. Finally, note that since
{x(t), y(t)} is an optimal program from x, it is a good program by (1), and so (US)
follows from Theorem 1 (3). �
Proof of Theorem 2 Let us note first that since ξ = 1, we have x̂ = 1/2a, p̂ = 1/2,
and (1/a) = 1 + (1 − d) > 1, so that a ∈ (0, 1) and ad ∈ (0, 1).

(1) Since {x(t), y(t)} is a full-employment program from xo, we have β(t) = 0
for t ∈ N, and δ(t) = α(t) for t ∈ N. Since x(t) = x̂ for t ≥ 1, we also have
X(t) = 0 and δ(t) = 0 for t ≥ 1. Thus, using Lemma 1 and ξ = 1, we obtain for
all T ≥ 1,

∑T

t=0
δ(t) = δ(0) = α(0) =

∑T

t=0
[α(t)/(−ξ)t ] = adp̂X(0) (26)

If {x(t), y(t)} is not optimal, then there is θ > 0 and N ∈ N, and a program
{x ′(t), y ′(t)} from xo such that for all T > N,

θ ≤
∑T −1

t=0
[u(x ′(t), x ′(t + 1)) − u(x(t), x(t + 1))] (27)

By Proposition 1, {x ′(t), y ′(t)} can be taken to be a full-employment program from
xo. So, we have β ′(t) = 0 for t ∈ N, and δ′(t) = α′(t) for t ∈ N. Thus, using
Lemma 1 and ξ = 1, we obtain for all T ≥ 1,

∑T

t=0
δ′(t) ≥

∑T

t=0
[α′(t)/(−1)t ]

= adp̂X(0) − adp̂[X′(T + 1)/(−1)T +1] (28)

Using (26) and (28), we obtain:

∑T −1

t=0
δ(t) −

∑T −1

t=0
δ′(t) ≤ adp̂[X′(T )/(−1)T ] (29)

Now, using (27) and (29) in (25), we get for all T > N,

−p̂X′(T ) + adp̂[X′(T )/(−1)T ] ≥ θ (30)

Note that by (27), {x ′(t), y ′(t)} must be good, since {x(t), y(t)} is clearly
good. Using (30), we see that when T > N is odd, we must have [−X′(T )] ≥
θ/p̂(1 + ad) = (θ/a). Thus, by Theorem 1 (4), for T > N and even, X′(T )
must converge to a positive number as T → ∞. But, for T > N and even, we
have p̂X′(T )[ad − 1] ≥ θ by (30), so that X′(T ) ≤ −θ/p̂[1 − ad] < 0 (since
ad ∈ (0, 1) ), a contradiction. Thus, {x(t), y(t)} is optimal from xo.
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(2) It can be checked that the program {x ′(t), y ′(t)} has α′(t) = β ′(t) = 0 for
all t ∈ N, so that it satisfies condition (VLM). Thus, by Proposition 3, it must be
optimal.

(3) Since h is convex valued, there is a continuum of optimal programs from
xo. �

Proof of Proposition 5 The golden-rule program, defined by (x̂(t), ŷ(t)) = (x̂, x̂)
has zero value loss in each period, and is therefore optimal by Proposition 3. Thus,
V (x̂) = 0 by (10).

If {x(t), y(t)} is an optimal program from x, and x ′ > x, then we can define:
x ′(0) = x ′, x ′(t+1) = x ′(t)+z(t+1) for t ≥ 0, and y ′(t) = y(t) for t ≥ 0, where
{z(t+1)} is the investment sequence associated with the program {x(t), y(t)}.Then,
it is easy to check that x ′(t) > x(t) for all t ≥ 0, and so {x ′(t), y ′(t)} is a program
from x ′. Thus, V is non-decreasing on R+.

A slight refinement of this argument shows that, in fact, V is strictly increasing
on R+. First, note that we must have z(t + 1) > 0 for some t ≥ 0. Otherwise, if
z(t + 1) = 0 for all t ≥ 0, then x(t) → 0 as t → ∞, which would contradict
the turnpike property of optimal programs. Let T be the first period for which
z(T + 1) > 0. If x ′ > x, we can define: x ′(0) = x ′, x ′(t + 1) = x ′(t) + z(t + 1)
for t �= T , x ′(T +1) = x ′(T )+z′(T +1), where z′(T +1) = z(T +1)−ε, where
0 < ε < z(T + 1), and ε is sufficiently close to 0 so that x ′(T + 1) > x(T + 1).
Finally, define y ′(t) = y(t) for t �= T , and y ′(T ) = y(T ) + ε. It is easy to check
that x ′(t) > x(t) for all t ≥ 0, and that {x ′(t), y ′(t)} is a program from x ′. Thus,
V is strictly increasing on R+.

Since � is convex, and u is concave on �, the value function is concave on
R+. It follows that V is continuous on R++.

(2) Let {x(t), y(t)} be the optimal program from x. Then:

V (x) = [u(x, x(1)) − u(x̂, x̂)] +
∞∑

t=1

[
u(x(t), x(t + 1)) − u(x̂, x̂)

]

Note that the sequence {x ′(t), y ′(t)} defined by (x ′(t), y ′(t)) = (x(t +1), y(t +1))
for all t ∈ N defines a program from x(1). Since {x(t), y(t)} is an optimal program
from x, it is a good program from x (Proposition 4), and so {x ′(t), y ′(t)} is a good
program from x(1).Thus, we have:

∞∑

t=1

[
u(x(t), x(t + 1))−u(x̂, x̂)

]=
∞∑

t=0

[
u(x ′(t), x ′(t + 1))−u(x̂, x̂)

] ≤ V (x(1))

the inequality above following from (10). This yields:

V (x) ≤ [u(x, x(1)) − u(x̂, x̂)] + V (x(1)) (31)

On the other hand, if (x, x ′) ∈ �, then by using an optimal program
{x ′(t), y ′(t)} from x ′, we can define a program {x(t), y(t)} from x by: (x(0),
y(0)) = (x, max �(x, x ′)), and (x(t), y(t)) = (x ′(t − 1), y ′(t − 1)) for t ≥ 1.
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Since the program {x ′(t), y ′(t)} from x ′ is good (by Proposition 4), so is the pro-
gram {x(t), y(t)} from x. Thus, by (9) and (10), we obtain:

V (x) ≥ [u(x, x ′) − u(x̂, x̂)] +
∞∑

t=1

[u(x(t), x(t + 1)) − u(x̂, x̂)]

= [u(x, x ′) − u(x̂, x̂)] +
∞∑

t=1

[u(x ′(t − 1), x ′(t)) − u(x̂, x̂)]

= [u(x, x ′) − u(x̂, x̂)] +
∞∑

t=0

[u(x ′(t), x ′(t + 1)) − u(x̂, x̂)]

= [u(x, x ′) − u(x̂, x̂)] + V (x ′) (32)

Thus, if {x(t), y(t)} is an optimal program from x, equality must hold in (31).
There are two implications of this finding. First, we must have:

V (x(1)) =
∞∑

t=1

[u(x(t), x(t + 1)) − u(x̂, x̂)]

and therefore [by (9)] the sequence {x ′(t), y ′(t)} defined by (x ′(t), y ′(t)) = (x(t +
1), y(t + 1)) for all t ∈ N is an optimal program from x(1). Thus, we must have
for each t ≥ 0 :

V (x(t)) = [u(x(t), x(t + 1)) − u(x̂, x̂)] + V (x(t + 1)) (33)

Second, V satisfies the following functional equation of dynamic programming:

V (x) = max
(x,x ′)∈�

{[u(x, x ′) − u(x̂, x̂)] + V (x ′)}

(3) We have already established one half of (iii) in (33) above. To establish the
other half, let {x(t), y(t)} be any program which satisfies for each t ∈ N :

V (x(t)) = [u(x(t), x(t + 1)) − u(x̂, x̂)] + V (x(t + 1))

Then, for every T ∈ N, we have:

V (x(0)) =
∑T

t=0
[u(x(t), x(t + 1)) − u(x̂, x̂)] + V (x(T + 1)) (34)

Since x(t) ≤ M(x(0)) for all t ∈ N and V is increasing on X, we can define
m = V (M(x(0))), and infer that V (x(t)) ≤ V (M(x(0))) ≡ m for all t ∈ N. On
using this information in (34), we obtain:
∑T

t=0
[u(x(t), x(t + 1)) − u(x̂, x̂)] = V (x(0)) − V (x(T + 1)) ≥ V (x(0)) − m

allowing us to conclude that the program {x(t), y(t)} must be good, and that there-
fore x(t) → x̂ as t → ∞. Thus, by the continuity of V on R++, we obtain
V (x(t)) → V (x̂) = 0 as t → ∞. Using this information in (34), we see that
{limT →∞

∑T
t=0[u(x(t), x(t + 1)) − u(x̂, x̂)]} exists and is finite, and:

V (x) =
∑∞

t=0
[u(x(t), x(t + 1)) − u(x̂, x̂)]
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Thus, by (8),(9) and (US), δ(x(0)) = ∑∞
t=0 δ(t), so that (by Proposition 3)

{x(t), y(t)} is an optimal program from x(0). �
Proof of Corollary 1 First, note that by (9), we have V (x)−V (x̂) ≤ p̂(x − x̂) for
all x > x̂, so that by concavity of V, we obtain V ′

+(x̂) ≤ p̂. Further, by concavity
of V, we have V ′

+(x) ≤ V ′
+(x̂) ≤ p̂ for all x > x̂.

We consider, first, the case in which x ∈ C. Then, for (x, x ′) ∈ �, it must be
the case that x ′ ≥ (1 − d)x ≡ x̄. Suppose, contrary to the claim of the Corollary,
there is x ′ > x̄, with x ′ ∈ h(x). Then, we have x ′ > x̂, and so V (x ′) − V (x̄) ≤
V ′

+(x̄)(x ′ − x̄) ≤ p̂(x ′ − x̄) < a(x ′ − x̄). Using this, we can write:

u(x, x ′) + V (x ′)
= {1 − a[x ′ − (1 − d)x]} + [V (x ′) − V (x̄)] + V (x̄)

< 1 − a(x ′ − x̄) + a(x ′ − x̄) + V (x̄)

= u(x, x̄) + V (x̄) ≤ V (x) + u(x̂, x̂) (35)

the last inequality in (35) following from Proposition 5(3). But, this contradicts
Proposition 5(2).

Next, consider the case in which x ∈ A. Denote [(1/a) − ξx] by x̄; note that
x̄ ≥ x̂. Suppose, contrary to the corollary, that there is some x ′ ∈ h(x) with x ′ �= x̄.
If x ′ < x̄, then for y ∈ �(x, x ′), we have a[x ′ −(1−d)x]+y < a[x̄−(1−d)x]+
x = 1, so labor is not fully employed, a contradiction to Lemma 1(2). If x ′ > x̄,
then x ′ > x̄ ≥ x̂, and so, we get V (x ′) − V (x̄) ≤ V ′

+(x̄)(x ′ − x̄) ≤ p̂(x ′ − x̄).
Using this, we can write:

u(x, x ′) + V (x ′)
= {1 − a[x ′ − (1 − d)x]} + [V (x ′) − V (x̄)] + V (x̄)

≤ {1 − a[x̄ − (1 − d)x]} − a(x ′ − x̄) + p̂(x ′ − x̄) + V (x̄)

< x + V (x̄)

= u(x, x̄) + V (x̄) ≤ V (x) + u(x̂, x̂) (36)

the last inequality in (36) following from Proposition 5(3). But, this contradicts
Proposition 5(2). �
Proof of Corollary 2 (1) Define {x̄(t)} by x̄(0) = x, and x̄(t) = x̂ for t ≥ 0.
Then, noting that (x̄(t), x̄(t + 1)) ∈ � for all t ∈ N, we can define {ȳ(t)} by
ȳ(t) = u(x̄(t), x̄(t + 1)) for all t ∈ N. Then, {x̄(t), ȳ(t)} is a full-employment
program from x. Thus, we have β̄(t) = 0 for t ∈ N, and δ̄(t) = ᾱ(t) for t ∈ N.
Since x̄(t) = x̂ for t ≥ 1, we also have X̄(t) = 0 and δ̄(t) = 0 for t ≥ 1. Thus,
using Lemma 1, we obtain:

∑∞
t=0

δ̄(t) = δ̄(0) = ᾱ(0) =
∑∞

t=0
[ᾱ(t)/(−ξ)t ] = adξp̂X̄(0) (37)

Now, let {x ′(t), y ′(t)} be an optimal program from x. [By Proposition 3, an opti-
mal program exists.] Then, {x ′(t), y ′(t)} is a full-employment program from x,
and using Lemma 1 and ξ > 1, we obtain:

∑∞
t=0

δ′(t) ≥
∑∞

t=0
α′(t) ≥

∑∞
t=0

(α′(t)/ξ t ) ≥
∑∞

t=0
[α′(t)/(−ξ)t ]

= adξp̂X(0) (38)



Undiscounted optimal growth in the two-sector Robinson-Solow-Srinivasan model 361

By Proposition 4, we have:
∑∞

t=0
δ′(t) ≤

∑∞
t=0

δ(t) (39)

for every program {x(t), y(t)} from x. But, by (37) and (38), we also have∑∞
t=0 δ′(t) ≥ ∑∞

t=0 δ̄(t), so that we must have
∑∞

t=0 δ′(t) = ∑∞
t=0 δ̄(t), and using

this in (39), we get:
∑∞

t=0
δ̄(t) ≤

∑∞
t=0

δ(t)

for every program {x(t), y(t)} from x. Thus, by Proposition 3, {x̄(t), ȳ(t)} is opti-
mal from x, and so x̂ ∈ h(x). Now, note that since

∑∞
t=0 δ′(t) = ∑∞

t=0 δ̄(t),
we must have equality in all the inequalities of (38). This, in turn, means that
α′(t) = 0 for all t ≥ 1, and so X′(t + 1) = (−ξ)X′(t) for t ≥ 1, by using (5).
Since x ′(t) ≤ M(x) for all t ∈ N, and ξ > 1, we must therefore have X′(1) = 0,
that is, x ′(1) = x̂. Thus, x̂ = h(x).

(2) First, consider the case where x ∈ (x̂, 1). Define a sequence {x(t)} by:
x(0) = x, and x(t + 1) = (−ξ)(x(t) − x̂) + x̂ for all t ∈ N. Then, it is easy
to check that (x(t), x(t + 1)) ∈ � for all t ∈ N, and so we can define {y(t)} by
y(t) = u(x(t), x(t + 1)) for all t ∈ N. Then, {x(t), y(t)} is a full-employment
program from x, with δ(t) = 0 for t ∈ N, by using (5). Thus, by Proposition 3,
{x(t), y(t)} is optimal from x, and so x(1) = (1/a) − ξx ∈ h(x). By Proposition
4, if {x ′(t), y ′(t)} is optimal from x, then δ′(t) = 0 for all t ∈ N, and so by (5),
x ′(1) = (−ξ)(x − x̂) + x̂ = (1/a) − ξx. Thus, h(x) = (1/a) − ξx.

Next, consider the case where x ∈ [1, k). Define a sequence {x(t)} by: x(0) =
x, x(1) = (1 − d)x and x(t + 1) = (−ξ)(x(t) − x̂) + x̂ for all t ≥ 1. Then, it is
easy to check that (x(t), x(t + 1)) ∈ � for all t ∈ N, and so we can define {y(t)}
by y(t) = u(x(t), x(t + 1)) for all t ∈ N. Then, {x(t), y(t)} is a full-employment
program from x, with y(0) = 1, and δ(t) = 0 for t ≥ 1, by using (5). Further,
if {x ′(t), y ′(t)} is any program from x, then we have x ′(1) ≥ (1 − d)x, and so
y ′(1) ≤ 1 = y(1), so that δ′(0) ≥ α′(0) ≥ α(0) = δ(0). Thus, by Proposition 3,
{x(t), y(t)} is optimal from x, and so x(1) = (1 − d)x ∈ h(x). By Proposition 4,
if {x ′(t), y ′(t)} is optimal from x, then δ′(0) = δ(0) and δ′(t) = 0 for all t ≥ 1.
Thus, x ′(1) = x(1) = (1 − d)x, and h(x) = (1 − d)x. �
Proof of Corollary 3 First, consider x ∈ (x̂, 1). Then, the result that [(1/a) −
ξx, x̂] ⊂ h(x) can be obtained by following the proof of Theorem 2. Next, con-
sider x ∈ [1, k). Then (1 − d)x ∈ h(x) by following the proof of Corollary 2(2).
Also, x̂ ∈ h(x) by following the proof of Theorem 2(1), noting that the argument
used there applies to all x ∈ (x̂, k). Since h is convex valued, [(1−d)x, x̂] ⊂ h(x).

Next, consider x ∈ C. Let T ∈ N be the smallest integer such that x̄ ≡
(1 − d)T x < 1; then T ≥ 1, and (1 − d)T x ≥ (1 − d). Define a sequence {x(t)}
as follows: x(t) = (1 − d)tx for t = 0, ..., T , and x(t + 1) = 2x̂ − x(t) for t ≥ T .
Then, it is easy to check that (x(t), x(t + 1)) ∈ � for all t ∈ N, and so we can
define {y(t)} by y(t) = u(x(t), x(t + 1)) for all t ∈ N. Then, {x(t), y(t)} is a full-
employment program from x, with δ(t) = 0 for t ≥ T . Further, if {x ′(t), y ′(t)}
is any program from x, then we have x ′(t) ≥ x(t) and y ′(t) ≤ 1 = y(t) for
t = 0, ..., T − 1 , so that δ′(t) ≥ α′(t) ≥ α(t) = δ(t) for t = 0, ..., T − 1.Thus,
by Proposition 3, {x(t), y(t)} is optimal from x, and so x(1) = (1 − d)x ∈ h(x).
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Finally, consider x ∈ A. Denote (1/a) − ξx by x̄; then x̄ ≥ x̂. If x̄ ∈ (x̂, 1),
define the program {x(t), y(t)} as in the proof of Corollary 2(2), dealing with
x ∈ (x̂, 1). If x̄ ∈ [1, k), define the program {x(t), y(t)} as in the proof of Cor-
ollary 2(2), dealing with x ∈ [1, k). If x̄ ∈ C, define the program {x(t), y(t)}
as in the above paragraph. Then, in each case, consider the program {x ′(t), y ′(t)}
defined by (x ′(0), y ′(0)) = (x, x) and (x ′(t), y ′(t)) = (x(t − 1), y(t − 1)) for
t ≥ 1. It can be checked that in each case this defines an optimal program. Thus,
(1/a) − ξx ∈ h(x) in each case. �
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